

Load Rebalancing for Distributed File Systems in Clouds
ABSTRACT:

Distributed file systems are key building blocks for cloud computing applications based on the MapReduce programming paradigm. In such file systems, nodes simultaneously serve computing and storage functions; a file is partitioned into a number of chunks allocated in distinct nodes so that MapReduce tasks can be performed in parallel over the nodes. However, in a cloud computing environment, failure is the norm, and nodes may be upgraded, replaced, and added in the system. Files can also be dynamically created, deleted, and appended. This results in load imbalance in a distributed file system; that is, the file chunks are not distributed as uniformly as possible among the nodes. Emerging distributed file systems in production systems strongly depend on a central node for chunk reallocation. This dependence is clearly inadequate in a large-scale, failure-prone environment because the central load balancer is put under considerable workload that is linearly scaled with the system size, and may thus become the performance bottleneck and the single point of failure. In this paper, a fully distributed load rebalancing algorithm is presented to cope with the load imbalance problem. Our algorithm is compared against a centralized approach in a production system and a competing distributed solution presented in the literature. The simulation results indicate that our proposal is comparable with the existing centralized approach and considerably outperforms the prior distributed algorithm in terms of load imbalance factor, movement cost, and algorithmic overhead. The performance of our proposal implemented in the Hadoop distributed file system is further investigated in a cluster environment.
ARCHITECTURE:

[image: image1.emf]
EXISTING SYSTEM:

State-of-the-art distributed file systems (e.g., Google GFS and Hadoop HDFS) in clouds rely on central nodes to manage the metadata information of the file systems and to balance the loads of storage nodes based on that metadata. The centralized approach simplifies the design and implementation of a distributed file system. However, recent experience concludes that when the number of storage nodes, the number of files and the number of accesses to files increase linearly, the central nodes (e.g., the master in Google GFS) become a performance bottleneck, as they are unable to accommodate a large number of file accesses due to clients and MapReduce applications.
DISADVANTAGES OF EXISTING SYSTEM:

The most existing solutions are designed without considering both movement cost and node heterogeneity and may introduce significant maintenance network traffic to the DHTs.
PROPOSED SYSTEM:

· In this paper, we are interested in studying the load rebalancing problem in distributed file systems specialized for large-scale, dynamic and data-intensive clouds. (The terms “rebalance” and “balance” are interchangeable in this paper.) Such a large-scale cloud has hundreds or thousands of nodes (and may reach tens of thousands in the future).

· Our objective is to allocate the chunks of files as uniformly as possible among the nodes such that no node manages an excessive number of chunks. Additionally, we aim to reduce network traffic (or movement cost) caused by rebalancing the loads of nodes as much as possible to maximize the network bandwidth available to normal applications. Moreover, as failure is the norm, nodes are newly added to sustain the overall system performance,resulting in the heterogeneity of nodes. Exploiting capable nodes to improve the system performance is, thus, demanded.

· Our proposal not only takes advantage of physical network locality in the reallocation of file chunks to reduce the movement cost but also exploits capable nodes to improve the overall system performance.

ADVANTAGES OF PROPOSED SYSTEM:

· This eliminates the dependence on central nodes.

· Our proposed algorithm operates in a distributed manner in which nodes perform their load-balancing tasks independently without synchronization or global knowledge regarding the system.

· Algorithm reduces algorithmic overhead introduced to the DHTs as much as possible.

ALGORITHM USED:

· Load Rebalancing Algorithm

SYSTEM CONFIGURATION:-

HARDWARE CONFIGURATION:-

· Processor

-
Pentium –IV
· Speed

-
1.1 Ghz

· RAM

-
256 MB(min)

· Hard Disk

-
20 GB

· Key Board

-
Standard Windows Keyboard

· Mouse

-
Two or Three Button Mouse

· Monitor

-
SVGA

SOFTWARE CONFIGURATION:-
Software Requirements

· Operating System : Windows

· Programming language: c#.Net

· Web-Technology: ASP

· Front-End: ASP.NET

· Back-End: SQL SERVER
REFERENCE:

Hung-Chang Hsiao, Member, IEEE Computer Society, Hsueh-Yi Chung, Haiying Shen, Member, IEEE, and Yu-Chang Chao, “Load Rebalancing for Distributed File Systems in Clouds”, IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 5, MAY 2013.
